F16 2000 Fall Meeting

U72A-12 1330h POSTER

Ridge Push and Plume Push

Wolf R Jacoby¹ (+49 6131 3923223; jacoby@mail.uni-mainz.de)

Herbert Wallner¹ (+49 6131 3923173; wallner@mail.uni-mainz.de)

¹Earth Sciences, University of Mainz, Saarstr. 21, Mainz 55099, Germany

Mainz 55099, Germany Driving forces of plate movements are an aspect of mantle convection. Ridge push (RP) is generally ac-cepted, plume push (PP) is less certain; an assesse-ment is attempted. Stresses are generated by lateral density variations subject to gravity and by drag from flow. The former can be estimated, the latter has a trade-off between viscosity and flow. Dynamic to-pography, geoid or gravity anomalies may give some hints. A simple model (thickening elastic lithosphere, viscous asthenosphere) permits evaluation by param-eter variation (relative elevation, plate thickness and density, asthenosphere viscosity, ridge length vs. plume "length). Most plumes exert insignificant PP, except the Iceland plume in the North Atlantic (NA). The ridge axial bathymetry falls off from +1 km in Iceland to -4 at 1600 km distance S and N (average bulge ele-vation excess 2.5 km), corresponding to RP at 60 Ma age (initial opening). The "standard" RP of the whole MAR is increased by 20% (NA: 30%). The influence of other ridge-near plumes is insignificant. The simple es-timates are backed up by FE modelling to evaluate the influence of the rheological structure. Only the non-elastic, flowing parts permit to expend driving work (RP x spreading). Simple parametrisation shows thick continental crust not to spread, while "hot" ridges and plumes with low-viscosity cores "work", depending on other plate boundary conditions (slab pull). While dif-ferent model aspects are examined, the results by Bott (Tectonophysics, 200,17, 1991) are supported. Plumes, except Iceland, play no significant role in the plate force balance, in contrast to the energy balance. Driving forces of plate movements are an aspect of except Iceland, play no significant role in the plate force balance, in contrast to the energy balance.

U72A-13 1330h POSTER

Shear-Wave Splitting Around Hawaii: Testing Kinematic Models of Lithosphere/Asthenosphere Interaction for a Plume

Kristoffer T. Walker¹ (650-725-0278; ktwalker@stanford.edu)

Goetz H. R. Bokelmann¹ (650-725-9181;

goetz@pangea.stanford.edu) ¹Stanford University, Department of Geophysics, Stanford, CA 94305, United States

Stanford, CA 94305, United States Observations of shear-wave splitting in plume regions may give important observational insight into the kinematics of upper-mantle flow and litho-sphere/asthenosphere interaction. The "parabolic flow model" predicts the geometry of flow above a mantle upwelling. Specifically, it predicts a characteristic spa-tial pattern of anisotropy, which allows us to constrain volumetric flow rate and relative motion of the plate with respect to the plume source. Shear-wave splitting and anisotropy can also help constrain rheological ma-terial behavior since it distinguishes regions of disloca-tion creep from those of other deformation mechanisms. In general, dislocation creep controls deformation in the lithospheric mantle. However, in regions of ele-vated mantle temperature, the zone of dislocation creep may deflect into the asthenospheric mantle. In regions

around mantle plumes therefore, upper-mantle shear-wave splitting may provide information about the kine-matics (and also the dynamics) of the interaction bewave splitting may provide information about the kine-matics (and also the dynamics) of the interaction be-tween the lithosphere and asthenosphere. This presen-tation will focus on testing kinematic models of the in-teraction between the lithosphere and asthenosphere by comparing teleseismic splitting measurements of SKS, SKKS, S, and ScS with those predicted for the various models. We use previously published shear-wave split-ting measurements from five stations on the Hawaiian Islands (PELENET and KIP), and augment them with measurements from an ocean-borehole seismometer lo-cated 220 km SW of Hawaii (OSN-1 pilot study) and an ocean-bottom seismometer located between Hawaii and California (H2O). Waveforms from these stations are very important, as they provide well-constrained measurements that are not influenced by the Molokai fracture zone, which possibly influences splitting mea-surements document the importance of ocean-bottom seismometers.

Preliminary data suggest that splitting beneath H2O can be explained by a single-layer model with an ENE fast polarization direction that is consistent with a fossilized lattice preferred orientation of olivine H_{2O} parallel to the spreading direction. Preliminary data from OSN-1 can also be explained by a single layer of anisotropy, but with an ESE fast polarization direc-tion and a relatively large delay time. We cautiously interpret this splitting and the splitting beneath the is-lands as due to upper-mantle anisotropy predicted by the "parabolic flow model". This implies that basal tractions under Hawaii resist plate motion rather than drive it, as it indicates the relative motion between lithosphere and underlying mantle. URL: http://pangea.stanford.edu/~ktwalker/Hawaii

U72A-14 1330h POSTER

Evidence for Recently Induced Deformation in the Mantle Beneath the Eifel Volcanic Fields (Germany) from Shear Wave Splitting Analysis

 $\frac{\text{Guenter Bock}^1}{\text{bock}@gfz-potsdam.de}(+49-331-288\ 1212;$

The Eifel-Plume Team

¹GeoForschungsZentrum Potsdam, Telegrafenberg Potsdam 14473, Germany

Splitting of SKS phases is a reliable diagnostic fea ture for horizontal anisotropy in the lithosphere and asthenosphere. Fast S-wave velocity directions and de-lay times between fast and slow split wave were de-termined for temporary seismic stations deployed betermined for temporary seismic stations deployed be-tween November 1997 and June 1998 in the area of the Eifel plume. Mantle plumes are regions where the preferred subhorizontal alignment of olivine causing SKS splitting may be lost as a result of rising mantle rock. Results of splitting analysis of SKS and SKKSphases can be summarized as follows: (1) Subhorizon-tal anisotropy is low in the Eifel area as evidenced by low delay times of not more than 0.5 s; (2) the direc-tions of the fast split waves are approximately NNE which is nearly parallel to the tensional component of the regional stress field; (3) the measured fast split wave directions are significantly different from the re-gional anisotropy directions which are approximately gional anisotropy directions which are approximately E-W. The results are interpreted by a model of man-tle material rising into the lithosphere where olivine is partly re-aligned parallel to the horizontal tension di-rection of the present-day regional stress field.

U72A-15 1330h POSTER

Evidence for Lithospheric Coupling in Anisotropic Body Wave Polarizations

Vera Schulte-Pelkum¹ ((858) 534-8119; vera@mahi.ucsd.edu)

Donna K Blackman¹

¹Scripps Institution of Oceanography, 9500 Gilman Dr. A-0225, La Jolla, CA 92093, United States

¹Scripps Institution of Oceanography, 9500 Gilman Dr. A-0225, La Jolla, CA 92093, United States The study of seismic anisotropy can address a fundamental question in lithosphere-asthenosphere interaction. If the orientation of upper mantle anisotropy coincides with surface tectonic features, mantle convection can be inferred to be a significant plate driving force. Alternatively, if the alignment of mantle anisotropy corresponds to current absolute plate motion then a passive response of the asthenosphere is indicated. Most commonly, SKS splitting and surface waves are used to infer mantle anisotropy, but these phases lack vertical (SKS) or lateral resolution (surface waves). We present new observational evidence of anisotropy from a global dataset of long-period P particle motion anomalies. This new technique is sensitive to seismic structure in the upper 300 km of the mantle underneath the station. By comparing fast directions of P polarization to other workers' results from SKS splitting and P_n travel time analysis, we add new depth constraints on the upper mantle anisotropy. Modelling of the effect of different anisotropic symmetries and orientations on P and S phases provides additional constraints. Our results suggest that lithospheric coupling is predominant in regions of past and present tectonic activity and that, therefore, mantle convection is a significant plate driving force in these areas. In contrast, anisotropy underneath cratons appears to be aligned with absolute plate motion indicating passive flow of the mantle in these regions.

U72A-16 1330h POSTER

Does Seismic Anisotropy at the Base of the Lithosphere Reflect Lithospheric Drag?

Michel Cara¹ (33-3-88416377; mcara@eost.u-strasbg.fr)

Eric Debayle¹ (33-3-88416484;

- Eric.Debayle@eost.u-strasbg.fr)
- Jean Jacques Leveque¹ (33-3-88416378;
- leveque@sismo.u-strasbg.fr)
- ¹IPGS-EOST, 5 rue R. Descartes, Strasbourg F67084, France

Seismic anisotropy is mainly governed by lattice-preferred orientation of olivine crystals in the upper mantle. At the base of the lithosphere, the olivine a axis should be parallel to the direction of maximum

This page may be freely copied.

extensional strain. For large horizontal strain, the azimuth of the preferred orientation of olivine a axes is thus expected to indicate the direction of relative mo-tion of the lithosphere above the underlying mantle. Depending on the hypotheses made on the asthenospheric flow, different patterns of seismic anisotropy are expected. Beneath continents both the directions of forces acting at the base of the lithosphere and the geometry of the asthenospheric flow may be related to the observations of seismic anisotropy in the depth range

observations of seismic anisotropy in the depth range 150-300 km. Changes in anisotropic directions with a vertical resolution of about 50 km can now be resolved thanks to the use of waveform modeling of Rayleigh waves. In addition, when dense array of broadband stations are available, this vertical resolution can be combined with available, this vertical resolution can be combined with a lateral resolution of a few hundreds of kilometers. Permanent IRIS and Geoscope broadband stations com-plemented by temporary deployment of portable sta-tions are thus well suited for mapping the azimuthal anisotropy at depth in several continental regions. As already observed beneath oceans where the directions of fast SV velocities at sub-lithospheric depth correlate with the directions of absolute motion of the plates, we observe that evidence others to accumulate beneath ocean show that evidence starts to accumulate beneath con-tinents. We present examples from India and Australia showing that the rather simple patterns of azimuthal anisotropy around 200 km could be related to the direction of the present-day plate motion while this is not the case at shallower depth where much more compli-cated patterns are observed within the lithosphere.

U72A-17 1330h POSTER

Mantle Flow at a Slab Edge: Seismic Anisotropy in the Kamchatka Region

Jeffrey Park¹ ((203) 432-3172;

- jeffrey.park@yale.edu); Vadim Levin 1 ; Valerie I Peyton³; Mark T Brandon¹; Jonathan M Lees²; Evgenii Gordeev⁴ (gord@emsd.iks.ru); Alexei Ozerov⁴ (ozerov@emsd.iks.ru)
- ¹Yale Univ., PO Box 208109, Dept of Geology, New Haven, CT 06520-8109, United States
- ²Univ. of North Carolina, Department of Geological Sciences, Campus Box 3315, Mitchell Hall,, Chapel Hill, NC 27599-3315, United States
- ³USGS, Albuquerque Seismological Laboratory, Albuquerque, NM 87115, United States
- ⁴Russian Academy of Sciences, Far Eastern Branch, OMSP, 683006, Petropavlovsk, Kamchatka, Kam, Russian Federation

The junction of the Aleutian Island chain and the Kamchatka peninsula defines a sharp turn in the boundary of the Pacific and North American plates, terminating the subduction zones of the northwest Paterminating the subduction zones of the northwest Pa-cific. Near a dangling slab, sharp lateral gradients of flow-induced anisotropy in the mantle should pro-duce spatial variations in shear-wave splitting and long-period Love-to-Rayleigh surface-wave scattering. Dur-ing 1998–1999 US and Russian investigators maintained a network of 15 broadband portable seismometers on the Kamchatka peninsula. Shear-wave splitting is weak ($\tau < 1$ see) throughout the Kamchatka array, but ex-hibits a consistent pattern. Birefringence observations in southern Kamchatka and near the Aleutian junction indicate a trench-parallel fast-polarization direction for stations above the Kamchatka seismogenic zone, and trench-normal fast polarization for stations beyond the stations above the Kamchatka seismogenic zone, and trench-normal fast polarization for stations beyond the slab edge. Weak splitting in S waves from local events argues against strong anisotropy in the supra-slab man-tle wedge. Lowe-to-Rayleigh scattering is strong for Love waves that approach Kamchatka from the north, within the overriding plate, consistent with a mantle shear gradient near the slab edge. Asthenospheric manstandard to suffer trench-parallel extension imme-diately beneath the slab as it descends into the upper mantle, and to flow around and beneath the disrupted slab edge. Seaward retreat of the Kamchatka trench slab edge. Seaward retreat of the Kamchatka trench would induce asthenospheric flow from the Pacific to the Eurasian side of the slab. Weak SKS splitting and weak Love-to-Rayleigh scattering on the seaward side of the subduction zone suggest that trench retreat is modest, but not zero. Low seismic velocity and a lack of deep-slab seismicity near the Aleutian corner suggest that the slab edge has eroded at depth, perhaps due to a breakup of the slab. The resulting loss of downdip load and the influence of asthenospheric flow around the slab edge may explain the shallowing dip of the Kamchatka Benioff zone at the Aleutian junction. If ablation of the Kamchatka slab-edge occurred as tran-Rainchacka benon zone at the Aleutan junction. In ablation of the Kamchatka slab-edge occurred as a tran-sient event rather than as a steady-state process, a sub-sequent lofting of the residual slab edge could induce pressure-release melting of the shallow mantle. Such a process could plausibly influence Klyuchevskoy vol-cano, which lies above the shallowed slab edge, and is the most active eruptive center on the Pacific Rim.